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ABSTRACT

The purpose of this report is to examine several modifi-

cations of extended Kalman filters which can be used to estimate

the position, velocity, and other key parameters asscciated with

maneuvering re-entry vehicles. These filters will be described

and discussed in terms of the fundamental problems of modeling ac-

curacy, filter sophistication, and the real-time computational re-

Vquirements. A nine-state, extended Kalman filter based upon the

maneuvering vehicle dynamics is compared with several other candi-

_ _ date filters. These candidate filters include a simple filter

based upon polynomial dynamics decoupled with respect to the co-

ordinates and a more complex, fully coupled, seven-state, extended

Kalman filter based upon a ballistic re-entry vehicle dynamics.

Techniques which adaptively increase the process noise to compen-

sate for modeling errors during the manevuers are examined.

'i iii
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1. INTRODUCTION

Estimating the state and associated parameters (i.e.,

tracking) of a re-entry vehicle (RV) based on its radar measure-

ments is a highly complex problem in nonlinear estimation. Not

only does the vehicular nonlinear equation of motion represent an

rexcessive computational burden, but the necessity of identifying

key parameters associated with vehicle dynamics complicates the

problem even further. The application of the linear Kalman filter

2,3and its extension to the nonlinear case for the tracking of a

ballistic re-entry vehicle (BRV) has been studied extensively dur-

ing the past decade. 4 - 1 Although many filters have been discussed,

they can generally be divided into two categories, i.e., filters

based upon polynomial modeled dynamics (referred to as polynomial

filters) and filters based upon the vehicular nonlinear differen-

tial equation of motion (referred to as BRV filters). There ex-

ists a trade-off between these two types of filters in both per-

formance and computational requirements.
6

In many practical applications of recursive estimation

theory, there is a problem in obtaining an exact representation

of the dynamic process. In the BRV tracking context, the BRV fil-

ter suffers from the fact that the ballistic coefficient which

must be identified on-line is an unknown and tinje-varying parameter.

For a mcderate parameter variation, the ballistic coefficient is

often modeled as a constant state variable with the variations and

1



uncertainties compensated for by a ficticious process noise term.2 '4

The variance of this noise term is related to the system structure

and the variation of the parameter and can be determined on-line by

adaptive filtering methods or premission by extensive simulation

studies. This technique has been applied successfully in estimat-
ing the ballistic coefficient of a ballistic re-entry vehicle. 7 1 0

The problem of state and parameter estimation of a man-

euvering re-entry vehicle (MARV) has received scant attention in

the past. A subject which has been discussed in some detail per-

= tains to the tracking of maneuvering aircraft12 ,13 and linear state

dynamics is usually assumed. The MARV tracking problem is similar

to the maneuvering aircraft tracking problem in the sense that the

target maneuvering force represents uncertain dynamics in the equa-

tion of motion. In this paper, several versions of the extended

Kalman filter which can be used to estimate the position, velocity,

and other key parameters associated with a MARV are discussed.

Similar to the BRV tracking case, the basic problem is still one

of trading off the factors of improved modeling accuracy, filter

sophistication, and computational requirements.

Three filters are discussed. The most complex one is

the extended Kalman filter based upon a MARV differential equa-

tion of motion (referred to as the MARV filter). There are nine

states in this filter, i.e., position (3-state), velocity (3-state),

drag (1-state), and lift (2-state). In this case the fictitious

2
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noise components affect only the drag and lift parameters. The

second filter is a modified BRV filter. It utilizes the BRV equa-

tion of motion but adaptively changes the process noise level to

compensate for the modeling error. The last filter is a polyno-

mial filter also siith adaptive process noise. The method of ad-

aptive filtering utilized in these last two filters is based upon

that of Jazwinski.1 4  The performance of these filters is compared

in terms of bias and RMS errors developed through Monte Carlo ex-

ercise of the algorith 2rajectories with different levels of

maneuvering severity are used to examine sensitivity of perfor-

mance with respect to the size of maneuver. In addition since a

MARV initially re-enters along a ballistic trajectory, a BRV fil-

ter may be used initially with a subsequent switch to a MARY fil-

ter upon detection of a vehicle maneuver. This approach referred

to as a combined filter is not examined in detail, nowever, a gen-

eralized likelihood ratio test for maneuver identification is des-

cribed.

The NARV differential equation of motion is defined in

a rectangular (Cartesian) coordinated system. A dish radar is

assumed located at the center of the coordinate system. The mea-

surement variables of the dish radar include range, azimuth, and

elevation. The rectangular coordinate system has the property

that it makes the trajectory differential equations less compli-

cated. The aisadvantage is that the measurement equations are

3I-
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nonlinear in terms of the state variables. The rectangular co-

ordinate is employed here because it is better suited for under-

standing the geometry of the vehicle maneuver.

This report is organized as follows. The MARV differ-

ential equations of motion are presented in the next section. " --

The generalized maximum-likelihood ratio test for maneuver detec-

tion is presented in the third section. The extended Kalman fil-

ter equations specific to the MARV tracking problem are presented

in Section 4. Section 5 presents a review of adaptive filtering

methods. Special emphasis is given to Jazwinski's adaptive fil-

tering method with application to the tracking problem. A brief

review of other adaptive filtering methods and a discussion on

the feasibility of their applications to the tracking problem are

included. Section 6 presents r',-1rical performance results of

the described filters for simulL _d test data. Comparisons of

both bias and RMS estimation errors for position, velocity, and

parameters are presented. The last section presents a discussion

of our investigation thus far and the direction for future devel-

opment.

2. MODELING OF MARV DYNAMICS

In this section, the MARY differential equation of motion

is presented. A Cartesian coordinate system is employed to des-

cribe these equations because it is felt that this system is bet-

ter suited for "physical" under7standing. A flat, nonrotating

4
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earth with constant gravity model is assumed. For the altitude

region below 100 km which is our concern, this assumption intro-

duces only insignificant modeling errors while greatly simplify-

-ing the equations. When the vehicle is viewed as a point mass

re-entering along a ballistic trajectory, there are two signifi-

[cant force terms, gravity and aerodynamic drag, acting on the
vehicle. The drag force acts opposite to the velocity vector with

a magnitude proportional to the air density and the square of the

velocity. When the vehicle undertakes a maneuver, a third force

term , lift, is introduced. The lift force is in a plane perpen-

dicular to the velocity vector. It may be represented by the mag-

nitude and the direction angle.

The MARV equations are stated below.

1 VV

v2 v

VZ = - l+X )V V- X sin y-
v2

V
p

1 2 1 2 :

--Pcif+X )V~V~) sin
V 2 2-(2)

*V

" I For derivation, see the Appendix.
S P
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where

Vx,V ,V : velocity components along x,y,x axis,
XYZ respectively

V: magnitude of velocity

IV planar velocity ( + T

a: drag force proportionality constant, its
inverse is known as the ballistic coeffi-
cient which is the ratio of vehicle mass
to effective drag area

6: lift force proportionality constant, it
has a similar aerodynamic meaning as drag

X: a constant defining the lift induced drag

y: angle between lift vector and the local
horizontal plane. It has the following
convention

y positive climb
y negative - dive

-900 < Y < 900 - left turn
900 < y < 2700- right turn

SGN(y): SGN(y) = 1 for -9 0 0 < y < 900
-1 otherwise

p: air density

G: gravitational constant I
Notice that when all the lift-related parameters are zero (i.e.,

X,6 ,y), the above set of equations reduce to the ballistic trajec-

tory equations. Similar to the ballistic vehicle case, the exten-

ded Kalman filter based upon the above model would include position,

6



velocity, and unknown parameters as state variables. This state

augmentation method for parameter identification has been applied

successfully when the parameter undergoes moderate variation.2

Ideally, one would like to identify all the MARV parameters, namely

6, y, and X. However, this makes the augmented system unobserv-

able. A reduced-order model will be used to identify a combina-

tion of these parameters. This involves estimating the tangential

2deceleration constant c(l+X2), the normal deceleration constant

X6, and the angle y. This makes the MARV estimator a nine-state

filter with position (3-state), velocity (3-state), and three

2lift/drag parameters [a(l+X2), X6, and y] as state variables.

The lift force representation used in these equations

is defined strictly in keeping with the aerodynamics. A disad-

vantage of this model is that the angle parameter y is related to

the vehicle acceleration in a "very" nonlinear fashion (i.e., sine,

9cosine, square root, etc.). A method to make the parameter rela-

tionship appear more "linear" is to decompose the lift force on

an cvpropriate coordinate system and then estimate the magnitude

along the coordinates. This formulation enables the lift para-

meters to relate to the acceleration terms in a manner similar to

that of the drag parameter in the BRV case. One such possible

The observability theory for a general nonlinear system has not
been found. For the particular system studied here, it can be
shown that it is indeed impossible to separate all parameters
unless other relations can be specified.

7
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decomposition which maintains the lift force perpendicular to the

drag force defines a lift force parallel to the ground (the turn

force) and another force perpendicular to the turn force (the

- climb force). With this formulation, the MARV equations may be

rewritten as:

12 1 2VV
Vx = - x(l+X )-pv 2 X6 -+ -vx6 X

cvi VX6 I
p p

V V V
=-7-pVct(l+x2 )+ V X6 -2 cV-m -

y~ ~ 21

Vz -.1~ z + 21PV X6 -G (2.2) I
where 6 and 6 are climbing and turning parameters, respectiv .y,

c t

with the following sign convention

6 > 0 climbing, 6 < 0 diving
c c I-

6t > 0 left 6t < 0 right turn

Notice that the total lift force constant is represented by

X6 Xr262

The nine-state MARV filter presented in the later sec- I

tion is the extended Kalman filter based upon Eq. (2.2). The actual

parameters estimated are ad a(l+X, at = t , and ac c .

3. MANEUVER DETECTION

In this section, a likelihood ratio test for maneuver

detection is presented. Maneuvering vehicles initially re-enter

8



along a ballistic trajectory. If a maneuver is initiated while

the target is being tracked by a ballistic filter, biases will

begin to build up in the filter residual. The maneuver detec-

tion is designed to exploit this residual bias. A bias model

which is increased linearly with time is assumed. If the amount

of bias is known a priori to the detector, the detection problem

is simplified to distinguish two Gaussian processes with known

means and variances. This simple case is first introduced to

establish notation. When the bias is unknown, and this is usually

the case in practice, a generalized likelihood ratio test is for-

mulated.15 This is shown to be an extension of the known bias

case. When the bias function is assumed completely unknown, the

test is reduced to the well-known chi-square test. This case is

shown in the last subsection.

3.1 Known Bias Case

Assume the bias in the residual caused by a vehicle man-

euver during one measurement interval be known to the hypothesis

tester and let it be denoted by Ay. It is assumed using our as-

sumption of a linearly increasing bias, the bias after k measure-

ments is kAy. Let a stack of K measurements be collected for

testing and Avk denote the k-th measurement residual with covari-

ance P Two hypothesis representing MARV (H1) and BRV (HO ) are
r,k~ 0

*"Filter residual" is defined as the difference of the measurement

and the predicted measurement.

9



H : Av. ka + k

H, k=l, .. K (3.1)

H

where the noise term nk is assumed Gaussian with zero mean and R

covariance Pr,k and is uncorrelated for different k. The likeli-

hood test is given by

MARV

A -TL-1

i( ..... A- k/Ho )  BRV

co -l 1 2p T1

2: cexp- r -k y r,k ( -y
kk=l
TI MARV

SNR~~ ~~ -E-1 1)E2/ 0

! ; -(n_ ) r k (3.2)
r k BR

t t yeThis equation may be reduced to obtain the following sufficient

X : kA r,kA k  1 k Ay r,ka (3.3)
k=l 2k~l

Notice that k is a Gaussian random process with known means and |

N variances under both hypothesis. The performance of this test is |-,

well known and is characterized by the normalized separation of

following definition of "signal-to-noise" ratio:
- : :~ ;Y/ I (1I -E (Zl/ 1

SNRK  (3.4)

Var (2£/Hl )+Var (2/H0 )

10
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where E( ) denotes the statistical exception and Var( ) the vari-

ance of the enclosed event. Subscript "K" denotes the integrated

=SNR over K measurements. Substituting in the appropriate terms

yields
X- K 2  T 11 2

SNR - k Ay r,ky

. SNR K(K+I) (2K+i) (3.5)-1 6

Notice that SNR K increases rapidly with K.

3.2 Unknown Bias Case

In the more realistic case where the bias term Ay is

unknown to the detector, the test becomes a generalized likeli-

hood ratio test which replaces the Ay by its maximum likelihood

11
estimate i This results in the following modified likelihood

ratio.

Max p( l,... '-- /-H 1) MARV
A AY >

A = < (3.6)
P( I Y/Ho ) BRV

Letting Ay denote the maximum likelihood estimate of Ay, Eq. (3.3)

becomes
k k Tl - 1 k Ay r,k y (3.7)

k= kl

The resulting estimate AV is then given by

[AYn Pr,n] r[nPrlAy] (3.8)

K 2 -i - __-i A



For the case when K=l, Eq. (3.7) becomes

PT -1
S= r,k Ay

which is the chi-square statistic.

3.3 Unknown Bias Function Case

In the previous subsections, the bias is assumed to in-

crease linearly in the residual. Higher order relations may also

be used in modeling the bias. However, when a small number of

measurements are used in the detector, the linear model is a rea-

sonable one to use. One could also assume no knowledge at all

about the bias model. In this case the hypothesis test can be

stated as
i H= /k= A-k lk

I k=l,..,K (3.9)

where the change of AV. with k is totally unassumed. The general-

ized likelihood ratio test is

Max p( ,., /AY,.,Ay HI MA.IV
=<

BRV (3.10)
p (Av,.,A_,/IH o

The maximum likelihood estimate of is therefore A and re-

sults in the following sufficient statistic.

=, 1 K2 k A- r, k~k
2 k=l

I U
12



This is a summation of K chi-square random variables. Detectors

may be devised by either testing the above summation or by using

a sequential testing process utilizing conseciltive chi-square

statistics.

4. RADAR TRACKING FILTERS

The furction of the tracking filter is to provide esti-

mates of the states and parameters which describe the motion of

the re-entry vehicle. These estimates are computed by means of

a weighted combination of the predicted and measured target states.

The prediction procedure carried out in the filter is based upon

the assumed target dynamics and the past tracking data.

- ,Let the following vector differential equation denote

the vehicle dynamic model used in the filtering equation

c(t) = f(x(t)) + n(t) (4.1)

where n(t) is a zero-mean white Gaussian noise process with covar-

iance Q(t). This state driving noise, which is sometimes artifi-

cially introduced by the filtering algorithm, is used to compensate

for the uncertainties that might exist in the model. The measure-

ments are collected from radar at discrete times and represented by

Zk =~xk)+ Vk(4.2)

where Yk is a zero mean Gaussian noise process with covariance Rk.

The observation function h(.) represents the transformation from

the state space to the measurement space or radar measurement vari-

ables. This estimation problem is known as the continuous process-

discrete measurement problem.1

13



Numerous algorithms have been proposed for re-entry ve-

hicle tracking. 4- 1 They differ mainly in the filter sophistica-

tion and the modeling complexity. The most widely used filter

structure is still the extended Kalman filter regardless of the

target dynamic model assumed. The extended Kalman filter is most

V popular because it offers an excellent balance between the compu-

tational requirements and the overall tracking performance. For

this reason, this same basic filter is used for MARV tracking.

rThe extended Kalman filter is stated below in its familiar form:

Predict Cycle
(state) t/k =(4.3)

(covariance) P = FkPt/k+Pt/k +Q (t) (4.4)
./kt/k F~/+/

where xt/k denotes the estimate of x at time t based upon all the

lata up to time tk and Pt/k denotes the covariance of at/k at time

t conditioned upon all the data up to time tk. Fk is the Jacobian

matrix of f(x(t)) at / Assuming that the process noise is con-

stant from tk to tk+I, Eq. (4.4) may be approximated by its dis-

crete equivalent 17
P =  k + QkAtk] T (4.4a) - V

A- ~k+l/k k k/k + kk] k
- '

where ik is the transition matrix of Fk and Atk = tk+l-t.
Update Cycle

(state) +lI/k+l = +l/k+Wk+l (?+-h(k+l/k)4

14



T T -1
(gain) Wk+l =Pk+l/kHk+l k+lPk+lk k+1k+l)

(covariance)

P= (I-Wk H (4.6k+l/k+l k+i k+l) Pk+l/k (4.6)

where Hk+1 = Jacobian matrix of h(x(t)) atk1 2k+l/k

The filter residual used in Section 3 is related to

the above filtering equation by

ak+l k+l- h2+i/k

with covariance

P =H P HT +
r,k+l k+l k+l/k k+l + 1

When the proper filter optimality conditions are satisfied, the

residual A- k+l has the same properties as those of the measurement

noise process and is known as the innovation process.

Three filters based upon varying degrees of model com-

plexity are discussed in the remaining part of this section. The

first two filters are obtained by using a simple modification of

L- existing ballistic vehicle tracking filters. This is made possible

by introducing substantial process noise through the filter so that

the estimates rely heavier on the measurement than on the target

dynamic model. Without this modification, these two filters would

diverge quickly from the MARV trajectory. The method of computing

14the noise variance is based upon that of Jazwinski and is dis- AN

cussed in the next section. The third filter is the extended

15



Kalman filter based upon the MARV differential equation of motion.

All three filters are now discussed individually in their order of

complexity.

4.1 Constant Acceleration Model (Polynomial Filter)

The simplest of the three candidate filters is referred

to as the "polynomial" filter because the motion for each of the

three coordinates is described in a second-order, constant accel-

eration dynamic model. The parameters to be estimated make up a

9-dimensional state vector,

x(t) = T 4.7)

The coordinates are assumed to be decoupled resulting in the simple 1
linear time-invariant state equation, 3

i(t) Lo 0 i xlt)+nlt), (4.8)

where n(t) represents the process noise term with covariance level

to be determined.

Since this filter does not explicitly estimate the drag

deceleration, AD, the nonlinear relationship between the inverse

ballistic coefficient, a, and the estimated states, AV-gcos= pv2a

is used to generate an estimate of the drag and drag parameters.

In this expression Av is the total acceleration along the velocity

16_ ______________
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vector, g is the gravitational constant, 0 is the angle between

the velocity vector and the line-of-sight through the center of

12.the earth, and -pv is the free air-stream pressure. From the

experience of using this filter in the ballistic re-entry vehicle

tracking, the a estimated is expected to contain a large random

error.

4.2 Constant Drag Model (BRV Filter)

The equations-of-motion for a ballistic re-entry vehicle

can be obtained from Eq.(2.1) by letting 6=0, X=O, and y=0. These

equations are completely delineated by the 7-dimensional state

- vector,

= T
x(t) (x,y,z,x,y,z,a) (4.9)

which forms the basic parameter set for the BRV filter.

The inverse ballistic coefficient, a, is the only para-

meter for which there is no simple, practical model structure in

terms of the other parameters. It is modeled as a constant Gaus-

sian Markov process, a n (t), where n (t) is a zero-mean white
OL a

noise process. This modeling method is often used in parameter

identification.2

The filter based upon this dynamic model has been used

extensively for real-time BRV tracking in the field with excellent

results reported. The modification which accommodates this

filter to the MARV requires the introduction of a proper process =

noise term. Due to its fine performance in ballistic vehicle

17



tracking, it is retained here with the hope that it wil ill

provide satisfactory ballistic coefficient estimatee. In addi-

tion, it indeed requires only minimum modification to tse -x t-

ing algorithms.

4.3 Constant Drag and Lift Model (ARV Filter)

The most complex and general filter considered in this

paper is structured similarly to the BRV filter but with the ad-

dition of the lift acceleration parameters to the state vector,

x(t) = ( xy d a (4.10)

and the implementation of the complete MARV equations-of-motion,

Eq. (2.2). As in the BRV case, the parameters are modeled as

a d = na " a= nd '  ac na where the noise processes are assumed
d c

to be white Gaussian.

This filter may also be used to track a BRV trajectory.

In using it to track BRV's, one should expect that the maneuver

parameter estimates are only caused by noise. The advantage of

using the MARV filter to track the BRV trajectory is that when

the RV executes unexpected maneuvering, the filter can adjust

automatically and still maintain target track. The disadvantage

is that the MARV filter will have poorer estimation performance

during the ballistic portion of the re-entry than would the BRV

filter. In addition, the redundant states carried along by the

MARV filter unnecessarily increase the computational load. One

approach to alleviate this problem is to use the BRV filter

18



initially and switch to the MARV filter after detecting the maneu-

ver. This combined filter is also tested in the simulation study.

5. METHODS OF ADAPTIVE FILTERING

In this section, the characteristics of the appropriate[ -~process noise needed to complete the description of the adaptive

extended Kalman filter are discussed. Finctionally, this noise

should reflect those uncertainties or discrepancies between the

assumed dynamic model and the actual re-entry phenomena. Prag-

matically, the problem is one of selecting noise levels (variances)

which are large enough to prevent filter divergence yet small

enough to retain the learning potential of the filter model; thus

avoiding unnecessarily large RMS errors in the estimates due to a

heavier reliance on the individual measurements. As the process

noise is increased, the prediction accuracy decreases, thus re-

quiring large radar track gates. In addition, our ability to dis-

tinguish between possible interfering targets is diminished.

From the discussion in the previous section, the state

augmentation method for parameter estimation (i.e., ad# t' aC)

requires the use of process noise. However, the use of BRV and

polynomial filters for MARV tracking requires even higher process

noise levels be applied to most states of the target dynamics.

The experience gained in determining the process noise for para-

meter identification in BRV tracking problem and its extension

to the MARV tracking is discussed in the first subsection. The

19



subject of adaptive filtering has been a topic of much research. 14"16 20

A brief discussion of adaptive methods and their applicability to

MARV tracking is given in Section 5.2. The application of the ad-

aptive filtering method proposed in Ref. 14 to complement the BRV

and polynomial filters for MARV tracking is discussed in Section

5.1 Constant Process Noise

The initial criterion for selecting the process noise

is to simply ensure track maintenance during worst case conditions,

i.e., large measurement variances, substantial nonlinear drag de-

-celerations, and severe evasive maneuvers. The noise covariance

matrix is selected prior to the mission and includes only those

elements of the matrix corresponding to parameters where we might

expect the greatest source of errors. For the polynomial, BRV,

and MARV filters, zero-mean Gaussian process noise is added to

acceleration rates, n(t) = (0,O,0,0,0,0,n,n__,n.); drag rates (orxyz

equivalsntly a), n(t) = (0,,0,0,0,0,n ); and drag-lift rates,
CE

n(t) = (0,0,0,0,0,0,n ,nCt,n ), respectively. The variances ofC d c

these Gaussian processes are selected on a trial-and-error basis

by adjusting the levels during simulation exercises until track

can be maintained throughout re-entry.

For the BRV filter a procedure which increases the noise

level in accordance with the magnitude of the estimated drag de-

celeration has proven to work quite well for tracking ballistic
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re-entry vehicles. This method is motivated by the fact that the

AN major source of error orginates from the drag model and that these

model errors become increasingly pronounced as the air ". nsity in-

creases in drag; thus, allowing the filter to adapt to the com-

paratively rapidly changing drag at lower altitudes. For this
reason, the process noise for a is defined as a. (ca2 where a

7-10

satisfactory value for c (based on experience) is c =0..

To date, little is known about the process noise level

needed for the other two parameters, at and a0, in the MARV fil-

ter. In the simulation study, they are selected to be represen- -_

tative of a uniform distribution of the range of possible para- [I
meter variation.

The above process noise selection procedure is of course

not "optimal." It represents, however, the result of some limited

numerical experience and is easily implemented.

5.2 Optimal Adaptive Filtering

The optimum Kalman filter requires complete knowledge of

system dynamics and statistics. A mismatched Kalman filter could

2
ultimately lead to filter divergence. The method which attempts

to identify the uncertain part of the system dynamics and statis-

tics on-line with the filtering process is called adaptive filter- I

ing. An even more versatile approach is to lump all the modeling

uncertainties in the system process noise. This method is certainly

nonoptimal in its own right, however, it enables a filter based upon
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a poor dynamic model to still lock on to the system output and is

the approach used in this paper. Much work has been done in this

area in attempting to rigorously and optimally identify the un-

known part of the system. In the problem addressed here, we are

interested only in identifying the proper process noise variance,

Q(t).

Representative work along this line may be found in

Refs. 16-20. These methods include use of, 1) the properties of

the innovation process, 2) the Bayesian formulation which

includes the covariance Q(t) in the a posteriori density function,19

and 3) the correlation-type estimator based upon residuals.20 All

of these methods require extensive computational resources since

all the data are iteratively reprocessed for each new estimate.

To circumvent some of the computational requirements most of these

"optimal" methods are subplanted by some sort of suboptimal algo-

rithm employing simpler estimators and limited memory filters.

For most cases these suboptimal algorithms still require unaccept-

able computer resources yet are of questionable reliability.

Due to processing time constraints we have considered

only the simple (even nonoptimum) methods, in this tracking study.

5.3 A Simple Adaptive Filtering Method

Detection of an unex2ected maneuver as well as any com-

pensation that may be taken is generally based upon the behavior

of the residuals, Ak" The covariance matrix of this residual is
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computed in the filtering algorithm as

Pr,k = kPk/k-H k + Rk (5.1)

Jazwinski14 suggested a real-time algorithm which determines the

appropriate process noise based upon the statistical behavior of

the residuals. The attractiveness of this method is in the sim-

plicity of its implementation. Even though there is no criterion

of optimality involved, it is shown in the numerical results that

this method enables the BRV and polynomial filter to track the

MARY. The oriainal discussion in Ref. 14 pertained to linear fil-

tering, it will be restated here using our notations in nonlinear

filtering.

Let denote the covariance matrix which appearsk/k-l
in the prediction cycle due to the process noise, i.e.,

g T
Sk/k-1 = k-i (Q k-lAtk-) Dk-1 (5.2)

Assuming that the matrix which appears in the residual covariance

due to Zk/k-l is diagonal, the Jazwinski estimator states

[ 4k i r,kjii,
- tkF " kHk/klH = if positive (5.3)

_0 ; otherwise

This estimator basically requires that the residual must be within

a reasonable range of the residual covariance as predicted by the

Kalman filter. If it fails to satisfy this requirement, the pro-

cess noise is increased accordingly to enlarge the corresponding
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residual covariance so that the filter update equation places

heavier reliance on the most recent measurement.

Ultimately, the Qk matrix must be determined. In the

tracking problem discussed here, one may assume that the position

estimation error is caused by the errors from the velocity esti-

mates. For the case of BRV filter, the Q matrix becomes

3x3 03x4

0 0

Q= (5.4)

0 0 0

0 4x3 2 0
y

2

0o 0 0

The a2 of above is determined by the method discussed in Section
a

5.1 while 2 2i 2? will be computed from Eqs. (5.2) and (5.3).

It is known that the transition matrix 4) may be approximated by

the following expression

.. At 0 0 0

!3x3

13x 0 At 0 0

0 0 At 0

1 100
04x 0 1 0

S I 0 0 1 0

10 0 0 1I

where At is the time interval between measurements. Using (5.5)

and (5.4) and carrying out the multiplication of (5.2) yield
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2- 2 2
At a 0 0 At0 0 00

2 2 2
0 At 0 0 Ata 0 0

y y

2 2 20 0 z

2 2 2 2 2
=Ata? 0 0Ni a~4 2t~4~%~l

k/k-i x X ii

0 Ata? 0 e 2 2 2 2

y ?l2c a y 2ca ' 24'3  'J2 a
-- iAt°'2 4i 2  2 2 .2 2 02

22 2 22 2

:~~ ~ 0 0 iO 20 3
At* ~l~3a ~23a 3a 3  a3

(5.6)

The H matrix in (5.3) is the Jacobian matrix of the measurement

equations. In the tracking application, it represents the lin-

earized transformation from state variables to the radar measure-

ment variables. With (5.3), one is always able to compute the

position component variances in the state space from residuals

in the measurement space. Let the position component variance

be denoted by x' ay and az one obtains a? = o iy = o ,

and 2 = from (5.6). This completes the computation of the
z z

Q matrix.

Several problems emerge from this rather simple adaptive

noise estimator. This estimator as outlined above is based upon a

single residual which, as Jazwinski points out, may not be statis-

tically significant. Random fluctuations of the residual could
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cause unnecessary response from the estimator. One possible course

of action is to use the smoothed residuals over a large number of

measurements.

Other approaches of preventing an over-reaction are to do

one or some of the following:

1. Activate the adaptive estimator only during
a detected maneuver or within an altitude
interval over which maneuvering is expected
to occur.

2. Limit the amount of noise that may be added--
corresponding to the maximum maneuver ex-
pected.

3. Change Eq. (5.3) to the form

g - ci ~~K yky -cPr,k

where "c" is a constant to be determined em-
pirically.

6. NUMERICAL EXAMPLES

In this section the numerical results obtained by apply-

ing simulated data to the filters are presented. The simulation

program includes a trajectory simulator and the tracking filters.

The trajectory simulator consists of a numerical integration pro-

gram whicn generates noise-free trajectories in Cartesian coordin-

ates and a radar simulator which transforms the state variables

into the radar measurement state space and adds noise to the mea-

surements. There are four algorithms used in the testing. They

are the polynomial filter, BRV filter, MARV filter, and the com-

bined BRV and MARV filter. The combined filter uses a nonadaptive
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BRV filter initially and switches to a MARV filter after detecting

the maneuver. The detection algorithm is that described in Se-tion

3.2. The simulator runs in a Monte Carlo fashion to obtain the

means and standard deviations of the estimates. The results from

each filter are compared in terms of position rms error, velocity

rms error, and the means and standard deviations of parameter es-

timates. Evaluation of these filters based on real data will not

be discussed in this report. Due to the model discrepancies which

always arise between a mathematical model and the actual physical

process, the validity of applying such techniques to the real world

can only be established after a thorough exercise with actual field

data. This subject is currently under investigation and will be

documented in a future Lincoln Laboratory report.

Three trajectories having different maneuvering scenarios

are used to exercise these filters. The first trajectory (Tl) can

be described as a moderate maneuver in which a combined dive and

left turn both having equal magnitude begins at 30 km altitude.

The maneuvering force increases gradually to about 128 g at around

23 km and then decreases to zero at about 16 km. At 16 km, the

RV initiates a climb and eventually reaches 120 g at around 10

km and decreases to zero at around 5 km. The second trajectory

(T2) undergoes more severe maneuvers. It instantaneously jumps

to a 160 g left turn at 35 km. The turning coefficient (at) is

maintained constant until 27 km while the lift force builds to a
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maximum of 500 g due primarily to the increase in air density.

The left turn force then drops instantly to about 45 g at 27 km

and then increases to 152 g at 18 km. At thi altitude it re-

duces to about 20 g and remains small until 3 km. The lift force

is zero below this altitude. The ballistic coefficient of T2 also

jumps to simulate a sudden change in the lift induced drag force.

The T2 trajectory is indeed unrealistic and it is included solely

for the purpose of testing filter response. The third trajectory

(T3) takes only minor maneuvers. A combined dive and left turn

with equal magnitudes starts at 30 km and gradually increases to

5 g at 25 km then decreases to zero at 20 km. At 20 km, the RV

initiates a combined climb and right turn with equal magnitudes

and eventually reaches 10 g at 15 km and decreases to zero at 10

km. It dives and turns to the left again at 10 km and reaches 10

q at 5 km and decreases to zero at 1 km. This trajectory closely

resembles a BRV trajectory. It is included to test the sensitivity

of the MARV filter.

A dish radar is assumed located at the origin of the

.: trajectory coordinate system. The measurement variables of a

dish radar include range (R), azimuth tA), and evaluation (E).

Assuming that the trajectory coordinate system uses x-axis point-

ing east, and y-axis pointing north, and z-axis perpendicular to

the lo-cal horizontal plane, the radar measurement variables are

related to the state variables by the following equations.

28

NU



R= x

Z A tan x i (6.1)

-1 z
E =tan

A range measurement standard deviation of one meter is assumed.

For waking targets, a one-meter standard deviation is still repre-

sentative since coherent burst waveforms can be used for range

marking and clutter suppression. The angle measurement standard

deviation is assumed to be .17 milliradian. A data rate of 10

measurements per second is utilized throughout the trajectory.

The process noise is introduced in the MARV filter only

in the states, representing parameters (i.e., ad' t' and ac). The

variance of input noise for ad is (.lad) just as in the BRV case.

The variances of process noise for the other two parameters are

determined by the range of parameter variation, the inherent fil-

ter stability and the balance of bias and random errors. After

testing over a range of values, they were selected to be 5x10 7

for T1, 5x10 for T2, and 5x10 for T3. The track is initiated

at 80 km altitude. The adaptive portion of the BRV and polynomial

filters is activated at 45 km.

The estimated position rms errors made by all four algo-

rithms in using trajectories Ti, T2, and T3 are presented in Figs.
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[ 1, 5, and 9, respectively. All algorithms performed satisfacto-

rily. If the only tracking requirement is to maintain the vehicle

in track, the polynomial filter is certainly most attractive since

it requires the least computation.

Recalling the fact that the adaptive filtering algorithm

enables the filter to rely heavier on current measurements, note

the sudden increase of position error at 45 km altitude which in-

dicates the activation of the adaptive feature. If the adaptive

filtering algorithm was not used, the BRV filter would diverge

quickly from the trajectory. This indicates a trade-off between

a range of tolerable rms errors and a range of intolerable bias

error (loss of track). Notice that large, impulse-like errors ap-

pear with MARV filter and the combined filter in tracking T2 tra-

jectory. As described ear-ier, the maneuvering force history of

Ti is moderate (and realistic). The MARV filter responded to this

maneuvering smoothly. The change of maneuvering force of the T2

is sudden and drastic. The impulse-like error of the MARV filter

represents the system delay in responding to such a change. The

large transients in the combined filter observed on both trajec-

tories occur as one switches from the BRV to the MARV filter.

This effect may also be seen in other state estimates as well.

The advantage of using this combined algorithm is the better per-

formance achieved and the less computation required during the

nonmaneuvering region. Unfortunately, the transient phenomenon
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lasts over a 10 km altitude interval. This is due in some respect

to the fact that the method used in initiating the MARV filter in

the combined algorithm is rather arbitrary. An improved initia-

tion algorithm could smooth the transient somewhat.

The velocity rms errors of using trajectories Tl, T2, and

T3 are presented in Figs. 2, 6, and 10, respectively. The polyno-

mial filter estimates have the largest errors. The transients in
the combined filter are again apparent. The averaged ballistic

coefficient estimates of trajectories TI, T2, and T3 are presented

in Figs. 3, 7. and 11, respectively. Also shown in these figures

are the true underlying parameters and the one standard deviation

level. The estimates made by the polynomial filter are very er-

ratic. The estimates made by the MARV filter are very good and

follow the parameter variation closely. The combined filter also

estimated the coefficient well except during the transition period.

The estimates made bv the BRV filter exhibit substantial biases in

the maneuvering region. It, however, is much more stable than the

polynomial estimate. From the one standard deviation interval, it

is found that the random errors are usually within 10% of the esti-

mated values except those of the polynomial filter.

Figures 4, 8, and 12 present the maneuvering parameter

estimates of trajectories TI, T2, and T3, respectively. Only the

MARV filter and the combined filter can provide these estimates.

The estimates follow the parameter closely. Notice in Fig. 8 the
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turning coefficient takes an abrupt jump while the estimates re-

spond to this change with only about six radar pulse delay. The

random error of maneuvering parameter estimates of the T3 trajec-

tory is rather large. Notice that the magnitudes of the maneuver-

ing parameters of this trajectory are small, the estimtes are

mostly buried in noise. One could improve the situation by further

reducing the process noise level on these parameters. It, however,

implies using the a priori knowledge which are usually not avail-

able in a real-time tracking application. Figure 13 presents the

maneuvering parameter estimates of T3 made by the MARV filter with

W process noise variances equal to 5x10-10 . Notice that the random

error is considerably smaller in this case. A useful analysis

will be to relate the range of parameter variation, the process

noise level, and the estimation rms errors. This analysis may be

applied for off-line study of vehicles exercising small maneuvers.

The anomalous transient effects of the combined filter can again

be seen in these results.

7. CONCLUSIONS

Three basic filters which can be used for the tracking

of a maneuvering re-entry vehicle have been presented. They are

the extended adaptive Kalman filters based upon MARV, BRV, and

polynomial dynamic models. A fourth algorithm which combines the

use of a nonadaptive BRV filter and the MARV filter through the

application of a generalized maximum likelihood ratio test is also
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presented. All algorithms are tested based upon the simulated

trajectory data.

From the simulation study, it is found that all filters

can track the target successfully in that they all have comparable

position estimation errors. If the only tracking objective is to

maintain the target in track, the polynomial filter is the most

attractive one to use since it requires least computation. The

attractiveness of the MARV filter is its ability to provide man-

euvering parameter estimates and more accurate ballistic coeffi-

cient estimates during target maneuvering. It is shown that the

estimates have only small errors and the filter can rapidly fol-

low the severe variations of the underlying true parameters. The

disadvantage of using the MARV filter lies in the computational

burden imposed on a real-time system. The BRV filter fits some-

where in between in that it does not require as much computation

as the MARV filter while still provides a reasonable ballistic

coefficient estimate when the target is undergoing maneuvers. It

is found that severe transients exist in the combined filter which

occur when switching from the BRV to the MARV filter and an appro-

priate algorithm for handover must be determined.

Much more work still has to be done in exercising these

filters on real data. The real data contains properties which

may not be fully modeled by mathematics. Such properties include

the range measurement degradation due to wake contamination,
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uncertainties in angle measurement error modeling, among others.

Due to the complexity expanded in the MARV filter, it may be more

sensitive to these real data uncertainties mentioned above.

Some fundamental conclusions may also be drawn at this

point. It is shown that the extended Kalman filter can perform

successfully in estimating the states of a severely nonlinear sys-

tem. In addition, the state augmentation method for parameter

estimation is effective even in systems having large parameter

variations. The simple adaptive filtering method employing pro-

cess noise to compensate for the model uncertainties is extremely

7powerful. When only the estimates of lower order states (such as

position) are desired, large modeling errors may be tolerated

with little sacrifice in the performance. These observations are

supported with examples shown in this paper. One cannot, of course,

claim that these methods work for all nonlinear systems with large

parameter variations. They do represent useful methods applicable

to many nonlinear systems.21
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APPENDIX A

Derivation of MARV Differential Equations of Motion

In this Appendix, the MARV equations of motion are derived.

A flat, nonrotating earth with constant gravity model is assumed.

For the altitude region below 100 km which is our concern, this

assumption introduces only small modeling errors while greatly

simplifying the equations. It is well known that a ballistic tra-

jectory may be described by the following vector equation

2 1+
a (t) =-pv t ud +g (A.1)

where

a(t) is the total acceleration applied on the vehicle

p is the air density

v(t) is the magnitude of the vehicle velocity

ud is the unit vector along the drag force direction
which is opposite to the velocity vector

g is the gravity force vector

is the zero lift ballistic coefficient defined as

C A where m=BRV mass, Cdo=zero lift drag

Cdo
coefficient, and A=reference area for drag evalu-
ation.

In tracking algorithms, the filter usually estimates the ballistic

parameter a which is defined as inverse of 8.

When the vehicle undertakes a maneuver, a third force

term, lift, is introducted. The lift force is in a plane perpen-

dicular to the velocity vector (Fig. A.1). Before starting the
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d) turn, climb, and drag forces form dfl orthogonal

coordinate

Fig. A.1. Geometry of lift and drag forces.
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MARV equations, it is useful to summarize the concepts associated

with lifting bodies. Consider the motion of a point mass in the

atmosphere with a velocity v(t). The total drag force is D(t)

D(t) = .CdApV (t) (A.2)

where C d =total drag coefficient. Let L(t) denote the lift force.

The magnitude of the lift force is C

L(t) =y (t) (A.3)

where CL = lift coefficient. The lift vector, L(t), is always

perpendicular to the drag force D(t), as shown in Fig. A.l.

A lifting body contributes extra drag. It is common prac-

tice to present this relationship between total drag D(t) and total

lift, L(t), by means of the so-called parabolic polar, which is ex-

pressed by the equation

d + kCL2

where

Cd0 = zero lift drag coefficient (i.e., the one
that characterizes a BRV)

k = constant that depends on the body

The production of different lift forces is accomplished

by changing the lift coefficient CL of the body. However, there

is a specific value for the lift coefficient denoted by CL* that

maximizes the so-called lift-to-drag ratio.

Lift-to-drag ratio A L(t) C L
-D(T) CD

C
L

2
CdO+kCL
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It is easily found that this value CL* of the lift coefficient is

C CdO
CL k

which leads to
1

maximum lift-to-drag ratio k -_d0

do

Another common practice is to express C in terms of CL*
L L

by the so-called lift-parameter X

CL(t) Xit)CL*; O<X(t)<l

Using these notations we can write:

Total Drag Force = D(t)= ipACd0+M2(t))v2(t) (A.4)

1 2Total Lift Force = L(t) = ipACL*X(t)v (t) (A.5)2A.5

Note that:
S1 2

Zero Lift Drag Force =pA1(t)

1 2 2
Lift-Induced Drag Force = pACd0X (t)v (t)

Using the above discussions, the maneuvering trajectory

may be described by the following vector equation

a(t) v (t) (l+X2)ud+X6 u + (A.6)

-* 1 Cd0+ u \ U+

where C =@ B m

C C*AC~L,

m

53

-_ __ _ _--- -



r t

Notice that this equation is written free of coordinate systems.

Once a coordinate system is chosen, set of state differential eq-

uations may be written for simulation and filter realization. The

lift vector is on the plane perpendicular to the drag vector. In

order to locate the lift vector on the plane, a reference quantity

is necessary. If a Cartesian coordinate is used and the lift vec-

tor reference is chosen to be the angle between the lift vector

and the local horizontal plane, Eq. (2.1) results. As discussed

- in the text, one can also decompose the lift vector into a turn

force and a climb force. Using this decomposition, Eq. (A.6) may

be rewritten as 1"7
(t) = fpv (t) a (I+X u X2 )  + X + + (A.7)

The corresponding state equations of (A.7) in a Cartesian coordin- I
ate is Eq. (2.2).
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APPENDIX B

Range, Azimuth, Elevation, and Range Rate Estimate

Errors of Numerical Examples

In this Appendix, figures showing range, azimuth, eleva-

tion, and range rate estimation errors of numerical examples given

in this report are presented. Results of using trajectories Tl, T2,

and T3 are shown in Figs. B.1 to B.4, B.5 to B.8, and B.9 to B.12,

respectively. Errors shown in each figure include estimate bias

and one standard deviation interval developed through 40 Monte

Carlo runs of the algorithm. Bias error is defined as the esti-

mated value minus the true value.

These results are included for reference purposes. Many

filter responses to the target maneuvering may be understood by

examining these results. For example, Fig. B.4(b) presents the

range rate estimate error of T2 made by the adaptive BRV filter.

Notice that a large negative bias appears \qhen the RV undergoes

maneuvering. When the RV turns sharply away from the radar, the

magnitude of the true range rate is rapidly decreasing. The BRV

filter which does not have the lift force component modeled esti-

mates the range rate corresponding to a vector sum of the drag

and lift forces. This range rate bias then in turn causes the 8

estimate to be biased as shown in Fig. 7(c). The MARV filter

which has the lift force modeled has an unbiased range rate esti-

mate. The estimation variance is high due to the process noise

introduced in the drag/lift parameter states.
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Other filter responses may be examined by using similar

observations.
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